

Middle School Java

Programming
Curriculum Essentials

 Document

Boulder Valley School District
Department of CTEC

February 2013

Boulder Valley School District Technology
– An Introduction to The Curriculum Essentials Document

Background
* This BVSD Curriculum Essentials Document incorporates the International Society for Technology in
Education’s (ISTE) National Educational Technology Standards for Students (NETS) and the integrated
essentials from the Colorado Academic Standards for 21st Century Learning Skills.

The NETS for Students from ISTE do not delineate how courses should be created or taught.
Each teacher must determine appropriate lesson planning. As technology rapidly evolves with new
dynamic tools, there is no set of prescribed software, tools, or technologies that students and teachers
may adopt to achieve these rigorous and robust standards. It is with experience, trust, and teacher
consensus in ISTE that the Technology Teachers and Educational Technology Department at BVSD
adopted these same NETS for our Boulder Valley students. The writing teams took the ISTE NETS for
Students and carefully and thoughtfully divided them into courses for the creation of the 2011 BVSD
Educational Technology Curriculum Essentials Documents (CED).

The ISTE 2007 Standards
The expectations in these documents are based on mastery of the topics at specific grade levels with
the understanding that the standards, themes and big ideas reoccur throughout PK-12 at varying degrees
of difficulty, requiring different levels of mastery. The Standards are:

1. Creativity and innovation
Students demonstrate creative thinking, construct knowledge, and develop innovative products and
process using technology.
Students:
a. Apply existing knowledge to generate new ideas, products, and processes
b. Create original works as a means of personal or group expressions
c. Use models and simulations to explore complex systems and issues
d. Identify trends and forecast possibilities

2. Communication and Collaboration
Students use digital media and environments to communicate and work collaboratively to support
individual learning and contribute to the learning of others.
Students:
a. Interact, collaborate, and publish with peers, experts, or others employing a variety of digital
environments and media
b. Communicate information and ideas effectively to multiple audiences using a variety of media and
formats
c. Develop cultural understanding and global awareness by engaging with learners of other cultures
d. Contribute to project teams to produce original works or solve problems

3. Research and Information Fluency
Students apply digital tools to gather, evaluate, and use information.
Students:
a. Plan strategies to guide inquiry
b. Locate, organize, analyze, evaluate, synthesize, and ethically use information from a variety of sources
and media
c. Evaluate and select information sources and digital tools based on the appropriateness to specific tasks
d. Process data and report results

4. Critical Thinking, Problem Solving, and Decision Making
Students use critical thinking skills to plan and conduct research, manage projects, solve problems and
make informed decisions using appropriate digital tools and resources.
Students:
a. Identify and define authentic problems and significant questions for investigation
b. Plan and manage activities to develop a solution or complete a project
c. Collect and analyze data to identify solutions and/or make informed decisions
d. Use multiple processes and diverse perspectives to explore alternative solutions

5. Digital Citizenship
Students understand human, cultural, and societal issues related to technology and practice legal and
ethical behavior. Students:
a. Advocate and practice safe, legal, and responsible use of information and technology
b. Exhibit a positive attitude toward using technology that supports collaboration, learning, and
productivity
c. Demonstrate personal responsibility for lifelong learning
d. Exhibit leadership for digital citizenship

6. Technology Operations and Concepts
Students demonstrate a sound understanding of technology concepts, systems, and operations. Students:
a. Understand and use technology systems
b. Select and use applications effectively and productively
c. Troubleshoot systems and applications
d. Transfer current knowledge to learning of new technologies

Components of the Curriculum Essentials Document
The CED for each grade level and course include the following:
An At-A-Glance page containing:
o approximately ten key skills or topics that students will master during the year
o the general big ideas of the grade/course
o the Standards of Technology Practices
o assessment tools allow teachers to continuously monitor student progress for planning and pacing needs
o Description of Technology at that level
The Grade Level Expectations (GLE) pages.
The Grade Level Glossary of Academic Terms lists all of the terms with which teachers should be familiar

and comfortable using during instruction. It is not a comprehensive list of vocabulary for student use

Middle School Java Programming Overview

Course Description
By design, this course enables middle school students,
with no previous experience, to jump right into the
Java programming language. Students will become
familiar with objects, classes, methods, parameters,
data types, fields, loops, constructors and more.
Students will learn about these topics, as well as
others, through modifying existing programs and
creating programs from scratch.

Topics at a Glance
 Objects, Classes, & Methods
 Fields, Constructors, Parameters
 Abstraction & Modularization
 Conditional Statements & Loops
 Collection Classes
 Parameters & Variables
 Java Class Libraries

Assessments

 Written Exams
 Computer-Based Exams
 Project-Based Assessments

Achieving these goals may be reached by a
variety of projects and/or programs. Use
of specific software programs or
technology equipment were deliberately
not mentioned due to the variation in
resources among different schools.

Standards: The National Education
Technology Standards (NETS) for Students
were developed in 1998 and updated in
2007 by ISTE, the International Society for
Technology in Education.

1. Creativity and innovation
2. Communication and Collaboration
3. Research and Information Fluency
4. Critical Thinking, Problem Solving, and
Decision Making
5. Digital Citizenship
6. Technology Operations and Concepts
7. Careers

Content Area: Technology – Middle Level Java Programming
Standard 1. Creativity and Innovation:
Students demonstrate creative thinking, construct knowledge, and develop original programs.
Prepared Graduates:
Apply existing knowledge to generate new ideas, products, or processes. Create original works as a means of personal or group expression.
Use models and simulations to explore complex systems and issues. Identify trends and forecast possibilities.
GRADE LEVEL EXPECTATION
Concepts and skills students master:
Apply existing knowledge to generate new ideas, products, or processes.
Create original works as a means of personal or group expression.
Use models and simulations to explore complex systems and issues.
Identify trends and forecast possibilities.

Evidence Outcomes 21st Century Skills and Readiness Competencies
Students can:

a. Apply prior learning to develop innovative solutions to
problems.

b. Produce a checklist of design constraints and apply them to a
given project.

c. Test, modify, and retest, solutions to produce an improved
final program.

d. Provide documentation of the process leading to a solution.

Inquiry Questions:
1. How is creativity different from problem solving?
2. Why are there always tradeoffs in design problems?
3. What are some of the ethical responsibilities that a designer

should consider?
Relevance and Application:

1. Program design involves trade-offs among competing
constraints and requirements.

Nature of Discipline:
1. Work in teams to solve a given problem.

Content Area: Technology – Middle Level Java Programming
Standard: 2. Communication and Collaboration:
Students work cooperatively to brainstorm possible solutions to multi-faceted problems programming problems. Students work together to
choose and apply potential solutions. Students will present solutions to peers and teachers.
Prepared Graduates:
Communicate information and ideas effectively to multiple audiences. Contribute to team projects to produce original works or solve
problems.
GRADE LEVEL EXPECTATION
Concepts and skills students master:
Communicate information and ideas effectively to multiple audiences.
Contribute to team projects to produce original works or solve problems.

Evidence Outcomes 21st Century Skills and Readiness Competencies

Students can:
a. Communicate effectively with others during brainstorming

sessions.
b. Successfully complete group projects and demonstrate

cooperation, teamwork, and division of labor to complete the
assigned task.

c. Successfully communicate evidence of successful
programming.

Inquiry Questions:
1. What skills do we need to work effectively with others?
2. How might people collaborate in the future?
3. Why is working with others so important?

Relevance and Application:
1. Communication and cooperation are necessary in everyday life.

These skills will remain necessary in our future careers as well.

Nature of Discipline:
1. Having skills to complete tasks and communicate solutions as

an individual and as a team member is essential for the 21st
Century Graduate.

Content Area: Technology – Middle Level Java Programming
Standard: 3. Research and Information Fluency:
Students use digital tools to gather, evaluate, and use information.
Prepared Graduates:
Plan strategies to guide inquiry. Locate, organize, analyze, evaluate, synthesize, and ethically use information from a variety of sources.
Process Data and report results.
GRADE LEVEL EXPECTATION
Concepts and skills students master:
Plan strategies to guide inquiry.
Locate, organize, analyze, evaluate, synthesize, and ethically use information from a variety of sources.
Process Data and report results.

Evidence Outcomes 21st Century Skills and Readiness Competencies
Students can:

a. Plan design strategies and processes by creating a project
management document listing steps in the design process, a
timeline for completion, and division of workload.

b. Locate, analyze, and evaluate Java exemplars to devise
strategies and formulate programming questions and
problems.

c. Evaluate and select appropriate components to be used to
meet the program specifications.

d. Test solutions and compile a report to communicate the
results of the collected data.

Inquiry Questions:
1. What role does research play in the programming process?
2. How can we assess/measure the quality of a program?

Relevance and Application:
1. Technology drives invention and innovation as a dynamic

process.

Nature of Discipline:
1. Project-based design and implementation

Content Area: Technology – Middle Level Java Programming
Standard: 4. Critical Thinking, Problem Solving, and Decision Making:
Students use critical thinking skills to design programs, manage projects, solve problems, and make informed decisions using appropriate
tools and resources.
Prepared Graduates:
Identify and define authentic problems and significant questions for investigation. Plan and manage activities to develop a solution or
complete a project. Collect and analyze data to identify solutions and/or make informed decisions. Use multiple processes and diverse
perspectives to explore alternative solutions.
GRADE LEVEL EXPECTATION
Concepts and skills students master:
Identify and define authentic problems and significant questions for investigation.
Plan and manage activities to develop a solution or complete a project.
Collect and analyze data to identify solutions and/or make informed decisions.
Use multiple processes and diverse perspectives to explore alternative solutions.

Evidence Outcomes 21st Century Skills and Readiness Competencies
Students can:

a. Identify and define project goals and intentions by describing
the problem or challenge.

b. Define the strategies they will use to meet project goals while
addressing constraints.

c. Explore and refine programming solutions by starting with
pseudo-code.

d. Assess strengths and weaknesses of alternate design
solutions.

e. Demonstrate evidence of creativity in the programming
process and final product.

Inquiry Questions:
1. How and why do we use the scientific process?
2. What are the steps or stages of a typical scientific process?

Relevance and Application:
1. Technological design is a systematic process used to initiate

and refine ideas, solve problems, and maintain products and
systems.

Nature of Discipline:
1. Design and engineering.

Content Area: Technology – Middle Level Java Programming
Standard: 5. Digital Citizenship:
Students understand human cultural, and societal issues related to computer technology and practice legal, ethical behavior.
Prepared Graduates:
Advocate and practice safe, legal, and responsible use of information and technology. Exhibit a positive attitude toward using technology
that supports collaboration, learning, and productivity. Demonstrate personal responsibility for lifelong learning.
GRADE LEVEL EXPECTATION
Concepts and skills students master:
Advocate and practice safe, legal, and responsible use of information and technology.
Exhibit a positive attitude toward using technology that supports collaboration, learning, and productivity.
Demonstrate personal responsibility for lifelong learning.

Evidence Outcomes 21st Century Skills and Readiness Competencies
Students can:

a. Demonstrate knowledge of copyright, patent, and fair
practices.

b. Illustrate the impact programming can have on quality of life.
c. Describe ethical and human impact issues in programming

through classroom discussion.
d. Exhibit personal initiative, leadership, and responsibility.

Inquiry Questions:
1. Is the impact of computers/software on society positive in all

aspects?
2. What is the relationship between technology and quality of life?
3. What are the implications of constantly evolving computer

related technologies?
Relevance and Application:

1. Advances in technology can impact us in both positive and
negative ways.

2. Technology can be used to improve our quality of life.
3. There are inherent risks that come with the use of certain

technologies.
Nature of Discipline:

1. How technology impacts our lives will become more and more
prevalent for a 21st century graduate.

Content Area: Technology – Middle Level Java Programming
Standard: 6. Technology Operations and Concepts:
Students demonstrate a sound understanding of technology concepts, systems, and operations.
Prepared Graduates:
Understand and use technological systems. Select and use applications effectively and productively.
GRADE LEVEL EXPECTATION
Concepts and skills students master:
Understand and use technological systems through the creation of Java programs.
Select and use hardware and software effectively and productively.

Evidence Outcomes 21st Century Skills and Readiness Competencies
Students can:

a. Correctly identify, categorize, and use project-relevant
resources.

b. Show evidence of operational skills when using computers
and other related technologies.

c. Demonstrate safe use of all resources.

Inquiry Questions:
1. How do I use our technology responsibly and safely?

Relevance and Application:
1. The acquisition of knowledge is needed to use and operate the

various technologies used in Java Programming environments.

Nature of Discipline:
1. Using tools and equipment to design and build projects with

real world application potential.

Glossary of Terms
Word Definition

abstraction A simplified representation of something that is potentially quite complex. It is
often not necessary to know the exact details of how something works, is
represented or is implemented, because we can still make use of it in its
simplified form. Object-oriented design often involves finding the right level of
abstraction at which to work when modeling real-life objects. If the level is too
high, then not enough detail will be captured. If the level is too low, then a
program could be more complex and difficult to create and understand than it
needs to be.

accessor method A method specifically designed to provide access to a private attribute of a class.
By convention, we name accessors with a get prefix followed by the name of the
attribute being accessed. For instance, the accessor for an attribute named speed
would be getSpeed. By making an attribute private, we prevent objects of other
classes from altering its value other than through a mutator method. Accessors
are used both to grant safe access to the value of a private attribute and to
protect attributes from inspection by objects of other classes. The latter goal is
achieved by choosing an appropriate visibility for the accessor.

applet Applets are Java programs based around the Applet or JApplet classes. They are
most closely associated with the ability to provide active content within Web
pages. They have several features which distinguish them from ordinary Java
graphical applications, such as their lack of a user-defined main method, and the
security restrictions that limit their abilities to perform some normal tasks.

application Often used simply as a synonym for program. However, in Java, the term is
particularly used of programs with a Graphical User Interface (GUI) that are
not applets.

application
programming
interface (API)

A set of definitions that you can make use of in writing programs. In the context
of Java, these are the packages, classes, and interfaces that can be used to build
complex applications without having to create everything from scratch.

argument Information passed to a method. Arguments are also sometimes called
parameters. A method expecting to receive arguments must contain a formal
argument declaration for each as part of its method header. When a method is
called, the actual argument values are copied into the corresponding formal
arguments.

arithmetic expression An expression involving numerical values of integer or floating point types. For
instance, operators such as +, -, *, / and %take arithmetic expressions as their
operands and produce arithmetic values as their results.

arithmetic operator Operators, such as +, -, *, / and %, that produce a numerical result, as part of
an arithmetic expression.

array A fixed-size object that can hold zero or more items of the array's declared type.
The initializer takes the place of separate creation and initialization steps.

assignment operator The operator (=) used to store the value of an expression into a variable
assignment
statement

A statement using the assignment operator.

behavior The methods of a class implement its behavior. A particular object's behavior is a
combination of the method definitions of its class and the current state of the
object.

block Statements and declarations enclosed between a matching pair of curly brackets

({ and }). For instance, a class body is a block, as is a method body. A block
encloses a nested scope level.

boolean One of Java's primitive types. The boolean type has only two
values: true and false.

boolean expression An expression whose result is of type boolean, i.e. gives a value of
either true or false. Operators such as && and || take boolean operands and
produce a boolean result. The relational operators take operands different types
and produce boolean results.

cast Where Java does not permit the use of a source value of one type, it is necessary
to use a cast to force the compiler to accept the use for the target type. Care
should be taken with casting values of primitive types, because this often involves
loss of information. Casts on object references are checked at runtime for
legality. A ClassCastException exception will be thrown for illegal ones.

Central Processing
Unit

The Central Processing Unit (CPU) is the heart of a computer as it is the part that
contains the computer's ability to obey instructions. Each type of CPU has its
own instruction set.

class A programming language concept that allows data and methods to be grouped
together. The class concept is fundamental to the notion of an object-oriented
programming language. The methods of a class define the set of permitted
operations on the class's data (its attributes). This close tie between data and
operations means that an instance of a class - an object - is responsible for
responding to messages received via its defining class's methods.

class body The body of a class definition. The body groups the definitions of a
class's members -fields, methods and nested classes.

class header The header of a class definition. The header gives a name to the class and defines
its access. It also describes whether the class extends a super
class or implements any interfaces.

class method A synonym for static method.
class scope Private variables defined outside the methods within a class have class scope.

They are accessible from all methods within the class, regardless of the order in
which they are defined. Private methods also have class scope. Variables and
methods may have a wider scope if they do not use the private access modifier.

class variable A synonym for static variable.
command-line
argument

Arguments passed to a program when it is run. A Java program receives these in
the single formal argument to its main method

comment A piece of text intended for the human reader of a program. Compilers ignore
their contents.

compilation The process of translating a programming language. This often involves
translating a high level programming language into allow level programming
language, or the binary form of a particular instruction set. The translation is
performed by a program called a compiler. A Java compiler translates programs
into byte codes.

compiler A program which performs a process of compilation on a program written in
a high level programming language.

condition A boolean expression controlling a conditional statement or loop.
data type There are eight primitive data types in Java; five of these represent numerical

types of varying range and precision - double,float, int, long and short. The

remaining three are used to representing single-bit values (boolean), single byte
values (byte) and two-byte characters from the ISO Unicode character set (char).

declaration &
initialization

A statement in which a variable is declared and immediately given its initial value.

do loop One of Java's three control structures used for looping. The other two are
the while loop and for loop. A do loop consists of a loop body and a boolean
expression. The condition is tested after the loop body has been completed for
the first time and re-tested each time the end of the body is completed. The loop
terminates when the condition gives the value false. The statements in the loop
body will always be executed at least once.

field Variables defined inside a class or interface, outside of the methods. Fields
are members of a class.

for loop One of Java's three control structures used for looping. The other two are
the while loop and do loop. A for loop consists of a loop header and a loop body.
The header consists of three expressions separated by two semicolons and one or
more of these may be omitted. The first expression is only evaluated once, at the
point the loop is entered. The middle expression is a boolean
expression representing the loop's termination test. An empty expression
represents the value true. The third expression is evaluated after each completion
of the loop's body. The loop terminates when the termination test gives the
value false. The statements in the loop body might be executed zero or more
times.

global variable A phenomenon that is more usually regarded as being a problem in structured
programming languages than in object-oriented languages. In a structured
programming language, such as Pascal or C, a global variable is one defined
outside the procedures and functions of a program. It is difficult to keep track of
the usage of such a variable as it is readable and writable by the whole program
or module in which it is defined. This makes such variables a common source of
logical errors. In fact, instance variables pose a similar problem within class
definitions, since Java's scope rules make them accessible to all methods defined
within a class. This is one of the reasons why we prefer to channel access to
instance variables through accessor and mutator methods even within a class.

graphical user
interface

A Graphical User Interface (GUI) is part of a program that allows user interaction
via graphical components, such as menus, buttons, text areas, etc. Interaction
often involves use of a mouse.

if-else statement A control structure used to choose between performing one of two alternative
actions.

if statement A control structure used to choose between performing or not performing further
actions.

import statement A statement that makes the names of one or more classes or interfaces available
in a different package from the one in which they are defined. Import statements
follow any package declaration {package!declaration}, and precede any class or
interface definitions.

infinite loop A loop whose termination test never evaluates to false. Sometimes this is a
deliberate act on the part of the program

inheritance A feature of object-oriented programming languages in which a sub
type inherits methods and variables from its super type. Inheritance is most

commonly used as a synonym for class inheritance {class!inheritance},
but interface inheritance is also a feature of some languages, including Java.

instance A synonym for object. Objects of a class are instantiated when a
class constructor is invoked via the new operator.

instance variable A non-static field of a class. Each individual object of a class has its own copy of
such a field. This is in contrast to a class variable which is shared by all instances
of the class. Instance variables are used to model the attributes of a class.

instantiation The creation of an instance of a class - that is, an object.
integer A positive or negative whole number. The primitive

types byte, short, int and long are used to hold integer values within narrower or
wider ranges.

iteration Repetition of a set of statements, usually using a looping control structure, such
as a while loop, for loop or do loop.

Java A portable high level programming language released by Sun Microsystems (now
Oracle).

Java Virtual Machine
(JVM)

An idealized machine whose instruction set consists of byte codes. A Java
program is compiled to an equivalent byte code form and executed on
an interpreter which implements the JVM.

key value The object used to generate an associated hash code for lookup in an associative
data structure.

local variable A variable defined inside a method body.
logical operators Operators, such as &&, ||, &, | and ^ that take two boolean operands and

produce a boolean result. Used as part of a boolean expression, often in the
condition of a control structure.

loop variable A variable used to control the operation of a loop, such as a for loop. Typically, a
loop variable will be given an initial value and it is then incremented after
each iteration until it reaches or passes a terminating value.

main method The starting point for program execution
public static void main(String[] args)

method The part of a class definition that implements some of the behavior of objects of
the class. The body of the method contains declarations of local
variables and statements to implement the behavior. A method receives input via
its arguments, if any, and may return a result if it has not been declared as void.

method body The body of a method: everything inside the outermost block of a method.
method header The header of a method, consisting of the method name, its result type, formal

arguments and any exceptions thrown. Also known as a method signature.
method overloading Two or more methods with the same name defined within a class are said to be

overloaded. This applies to both constructors and other methods. Overloading
applies through a class hierarchy, so a sub class might overload a method defined
in one of its super classes. It is important to distinguish between an overloaded
method and an overridden method. Overloaded methods must be distinguishable
in some way from each other; either by having different numbers of arguments,
or by the types of those arguments being different. Overridden methods have
identical formal arguments.

method result The value returned from a method via a return statement. The type of the
expression in the return statement must match the return type declared in
the method header.

method signature A synonym for method header.
mutator method A method specifically designed to allow controlled modification of

a private attribute of a class. By convention, we name mutators with a set prefix
followed by the name of the attribute being modified. For instance, the mutator
for an attribute named speed would be setSpeed. By making an attribute private,
we prevent objects of other classes from altering its value other than through its
mutator. The mutator is able to check the value being used to modify the
attribute and reject the modification if necessary. In addition, modification of one
attribute might require others to be modified in order to keep the object in a
consistent state. A mutator method can undertake this role. Mutators are used
both to grant safe access to the value of a private attribute and to protect
attributes from modification by objects of other classes. The latter goal is
achieved by choosing an appropriate visibility for the mutator.

newline The \n character.
new operator The operator used to create instances {instance} of a class.
null reference A value used to mean, `no object'. Used when an object reference variable is not

referring to an object.
object An instance of a particular class. In general, any number of objects may be

constructed from a class definition (see singleton, however). The class to which
an object belongs defines the general characteristics of all instances of that class.
Within those characteristics, an object will behave according to the current state
of its attributes and environment.

object-oriented
language

Programming languages such as C++ and Java that allow the solution to a
problem to be expressed in terms of objects which belong to classes.

operand An operand is an argument of an operator. Expressions involve combinations of
operators and operands. The value of an expression is determined by applying
the operation defined by each operator to the value of its operands.

operator A symbol, such as -, == or ?: taking one, two or three operands and yielding a
result. Operators are used in both arithmetic expressions and boolean
expressions.

out-of-bounds value A redundant value used to indicate that a different action from the norm is
required at some point. The read method of InputStream returns -1 to indicate
that the end of a stream has been reached, for instance, instead of the normal
positive byte-range value.

package A named grouping of classes and interfaces that provides a package namespace.
Classes, interfaces and class members without an
explicit public, protected or private access modifier {access!modifier}
have package visibility. Public classes and interfaces may be imported into other
packages via an import statement.

parameter See argument.
parsing Usually applied to the action of a compiler in analyzing a program source file

for syntax errors. It is also used more widely to mean the analysis of the
structure of input.

relational operators Operators, such as <, >, <=, >=, == and !=, that produce a boolean result, as
part of a boolean expression.

primitive type boolean, byte, char, double, float, int, long and short
return statement A statement used to terminate the execution of a method.

return type The declared type of a method, appearing immediately before the method name.
return value The value of the expression used in a return statement.
scope A language's scope rules determine how widely variables, methods and classes

are visible within a class or program. Local variables have a scope limited to
the block in which they are defined, for instance. Private methods and variables
have class scope, limiting their accessibility to their defining class. Java provides
private, package, protected and public visibility.

single-line comment single line comment
software Programs written to run on a computer.
software engineering The system of applying of an engineering discipline to the design, implementation

and maintenance of software systems.
state Objects are said to possess state. The current state of an object is represented by

the combined values of its attributes. Protecting the state of an object from
inappropriate inspection or modification is an important aspect of class design
and we recommend the use of accessor methods and mutator methods to
facilitate attribute protection and integrity. The design of a class is often an
attempt to model the states of objects in the real-world. Unless there is a good
match between the data types available in the language and the states to be
modeled, class design may be complex. An important principle in class design is
to ensure that an object is never put into an inconsistent state by responding to a
message.

statement The basic building block of a Java method. There are many different types of
statement in Java, for instance, the assignment statement, if statement, return
statement and while loop.

string An instance of the String class. Strings consist of zero or
more Unicode characters, and they are immutable, once created. A literal string is
written between a pair of string delimiters (").

syntax error An error detected by the compiler during its parsing of a program. Syntax errors
usually result from mis-ordering symbols within expressions and statements.
Missing curly brackets and semicolons are common examples of syntax errors.

variable declaration The association of a variable with a particular type. It is important to make a
distinction between the declaration of variables of primitive types and those of
class types. A variable of primitive type acts as a container for a single value of
its declared type. Declaration of a variable of a class type does not automatically
cause an object of that type to be constructed and, by default, the variable will
contain the value null. A variable of a class type acts as a holder for a reference
to an object that is compatible with the variable's class type. Java's rules
of polymorphism allow a variable of a class type to hold a reference to any object
of its declared type or any of its sub types. A variable with a declared type
of Object, therefore, may hold a reference to an object of any class

while loop One of Java's three control structures used for looping. The other two are the do
loop and for loop. A while loop consists of a boolean expression and a loop body.
The condition is tested before the loop body is entered for the first time and re-
tested each time the end of the body is completed. The loop terminates when the
condition gives the value false. The statements in the loop body might be
executed zero or more times.

white space Characters used to create visual spacing within a program. White spaces include

space, tab, carriage return and line feed characters.

